437 research outputs found

    Tight Load Balancing via Randomized Local Search

    Full text link
    We consider the following balls-into-bins process with nn bins and mm balls: each ball is equipped with a mutually independent exponential clock of rate 1. Whenever a ball's clock rings, the ball samples a random bin and moves there if the number of balls in the sampled bin is smaller than in its current bin. This simple process models a typical load balancing problem where users (balls) seek a selfish improvement of their assignment to resources (bins). From a game theoretic perspective, this is a randomized approach to the well-known Koutsoupias-Papadimitriou model, while it is known as randomized local search (RLS) in load balancing literature. Up to now, the best bound on the expected time to reach perfect balance was O((lnn)2+ln(n)n2/m)O\left({(\ln n)}^2+\ln(n)\cdot n^2/m\right) due to Ganesh, Lilienthal, Manjunath, Proutiere, and Simatos (Load balancing via random local search in closed and open systems, Queueing Systems, 2012). We improve this to an asymptotically tight O(ln(n)+n2/m)O\left(\ln(n)+n^2/m\right). Our analysis is based on the crucial observation that performing "destructive moves" (reversals of RLS moves) cannot decrease the balancing time. This allows us to simplify problem instances and to ignore "inconvenient moves" in the analysis.Comment: 24 pages, 3 figures, preliminary version appeared in proceedings of 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS'17

    Multiphoton processes and higher resonances in the quantum regime of the free-electron laser

    Get PDF
    Despite exhibiting novel radiation features, the operation of the proposed quantum free-electron laser would have the drawback that the number of emitted photons is limited by one per electron, significantly reducing the output power of such a device. We show that relying on different resonances of the initial momentum of the electrons increases the number of emitted photons, but also increases the required length of the undulator impeding an experimetal realization. Moreover, we investigate how multiphoton processes influence the dynamics in the deep quantum regime

    A high-gain Quantum free-electron laser: emergence & exponential gain

    Full text link
    We derive an effective Dicke model in momentum space to describe collective effects in the quantum regime of a free-electron laser (FEL). The resulting exponential gain from a single passage of electrons allows the operation of a Quantum FEL in the high-gain mode and avoids the experimental challenges of an X-ray FEL oscillator. Moreover, we study the intensity fluctuations of the emitted radiation which turn out to be super-Poissonian

    Improved Scheduling with a Shared Resource

    Full text link
    We consider the following shared-resource scheduling problem: Given a set of jobs JJ, for each jJj\in J we must schedule a job-specific processing volume of vj>0v_j>0. A total resource of 11 is available at any time. Jobs have a resource requirement rj[0,1]r_j\in[0,1], and the resources assigned to them may vary over time. However, assigning them less will cause a proportional slowdown. We consider two settings. In the first, we seek to minimize the makespan in an online setting: The resource assignment of a job must be fixed before the next job arrives. Here we give an optimal e/(e1)e/(e-1)-competitive algorithm with runtime O(nlogn)\mathcal{O}(n\cdot \log n). In the second, we aim to minimize the total completion time. We use a continuous linear programming (CLP) formulation for the fractional total completion time and combine it with a previously known dominance property from malleable job scheduling to obtain a lower bound on the total completion time. We extract structural properties by considering a geometrical representation of a CLP's primal-dual pair. We combine the CLP schedule with a greedy schedule to obtain a (3/2+ε)(3/2+\varepsilon)-approximation for this setting. This improves upon the so far best-known approximation factor of 22.Comment: Submitted to COCOA 2023, Full Versio

    Kindness or Hypocrisy : Political Mindset and Corporate Social Responsibility Decoupling in Chinese firms

    Get PDF
    This work was supported by National Natural Science Foundation of China: [Grant Number grant number 72202184]; Guanghua Talent Project of Southwestern University of Finance and Economics: [Grant Number NA].Peer reviewe

    Simple and Efficient Leader Election

    Get PDF
    We provide a simple and efficient population protocol for leader election that uses O(log n) states and elects exactly one leader in O(n (log n)^2) interactions with high probability and in expectation. Our analysis is simple and based on fundamental stochastic arguments. Our protocol combines the tournament based leader elimination by Alistarh and Gelashvili, ICALP\u2715, with the synthetic coin introduced by Alistarh et al., SODA\u2717
    corecore